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Problems of unsteady or transient filtration of a liquid or gas through 
a porous medium [ll reduce to a nonlinear differential equation BB 
follorB 

(0.1) 

In particular we have for the case of isothermal gas motion and motion 
of subterranean rater the equation 

au SW 

at= aa p (a=&) 
(0.2) 

In this erpression U(X, t) is the gas density of the subterranean 
rater head, a is the porosity of the subsoil. k ia the permeability of 
the porous terrain, and p is the viscosity ot! the gas. 

Boundary problems are of interest in rhlch gas density or pressure Is 
knom at the boundary of the strata, or the head acting on the sabterran- 
ean rater. This leads us to boundary conditions of the following kind 

u (0, t) = F (t) 

If the flow of gas or underground rater is given at the boundaries. 
the following boundary conditions accrue 

According to the sense of the problem F(t) > 0, F,(t) G 0. Fz( t) > 0. 

The derivative &$(a)/& (gas flow) is a continuous function. Equations 
(0.1) and (0.2) are dealt with In [2-41. The problems of numerical solu- 

tion of equations of the type (O.l), (0.2) where the initial and the 
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bouadarj problems are strictly positire are dealt with in [5-71. III our 

present work results are given of calculations of several 8ctual prob- 

lems on the BESY-2 compater at the Computing Centre of the Acsdey of 
Sciencea. 

1. The order of Eaustion (0.1) depends on the value of the function 

@XI t) ; when P > 0 it is a second order par8bolic equation, when B = 0 

it degenerates into a first order eqarrtfon. Self-similar solutions of 

Eqaation (0.1) are constructed in E21, and these have 8 break at the 

abscissae depending on time, at whfch da/d, undergoes a finite or in- 

finite jump. For this reason the function a(~, t) rlll not evince the 

smoothness prescribed br the equation at these points, and in fact, it 

will be a generaliaed solution. It is indeed the break point (dfscon- 

tinaitf) which gives rise to the main difficulties of numerical solution 

aad is the deciding factor as regard8 choice of method. Difference 

methods, built USI without regard to this peculiarity of the solution, 

can, In 808~ cases, give 8 qu8litrrtirelr incorrect resalt. The existence 

and uniqueness of a solotfom of (0.1) for the case of degeneration are 

dealt with in IS]. In [S-lo] problems concerning the fumdsmentals and 

methods of numerical c8lculation of a genersl solution to (0.1) are 
studied. The C8uchy problem is studied, and also the first and second 

boundary problems for 0 <x < OD and 0 < x < t. Aaal~sis demonsltrrtes thrt 

for numeric8l calcallation of (0.1) it is contealent to 8dopt the 

-explicit* scheme, i.e. to replure (0.1) by the following difference 

8!l81Oglie 

%k+r =u*+$ IT@ *+& - 2cp (uik) -t cp 0+_1K)I 

<*here h, r 8re respectively the pltohes (or steps) in the aDatia1 and 

the time coordin8tes. The rrpproximkte solution obt8fned from (1.1) shares 

the main features of the 8ccarate one; it is non-negcltlve, it is limited 

(or bounded) (that is It does not eroeed the murfmam value of the InitiaX 

and the boundary fuaction); it approaches the 8ccrrate solution as the 

step is iadeflnitelj decre8sed. 

2. The problem now deilt rtth is that of the filtr8tiOE Of a Semi ln- 

finite stratam: 0 < x < a. The distribution of heui s8tisfles Eqartion 

(0.2). The Initial ud bonmdar~ problems are 8s follows 

uI,=,=Q, UIx=o=at-bbt’ @>O, a>0 (2.4) 

‘Ihe bommdu~ oodditiom corresponds to the head 8t the bonndarr which 
varies nomonotonioallj; 8t first the he8d increases, then it decry% 
Thas the liquid first of 811 penetrates the stratm, and then it begins 
to flow out of It. It ia of interest to determine the Instant of time t0 
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when liquid begins to flow out of the stratuu, i.e. when the derivative 
Al/&9 vanishes when x = 0. The calculation was done by the difference 
uethod (1.1). Figures 1 and 2 give graphical solutions with boundary con- 
ditions of the type (2.1) with a = l/2, b = 1 and a = l/2, b =. l/4 for 

Fig. 1. Fig. 2. 

various times t (instant t is indicated at the side of the curve to which 
it applies). The table gives values of the solution to problem (0.2) to 
(2.1) for a = l/2, b = l/4. The graphs show that instant to equals 0.37 
and 1.47 for the cases a = l/2, b = 1 and a = l/2, b = l/4 respectively. 
Instant tl, when a is a naxiuuu for x = 0 equals 0.26 and 1.00 respec- 
tively. It is evident that in both cases t,, > tl. 

S. In the lsotherual gas filtration problem in a semi-Infinite 
stratuu (0 C z < em), uhen the gas pressure at the boundary Is such that 
when t + m the solution attains a self-similar reglue. it is interesting 
to try and calculate so as to analjse the velocity with which the self- 
siullaritj reglue is attained. 

Suppose the initial and boundary functions are as follows 

al*=0 5 9, qxzo = cf@ + Gl (t) > 0 

In this expression,aI( t) is such that 

(3.1) 

lim cl (t) / t* = 0 when t-r 00 

It has been shown in [21 that when 
(0.2) to (3.1) is self slullar. i.e. 

a @, t) = ct= f (E), 

Ui( t) 9 0 the solution to probleu 

y&i- 
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A point [,, exists such that 

f(E)>9 rhen 5<Eoy 

to which the folloring 8991x 

u 6, q > 0 when x> Eo v-7 GPI us0 when ~>,Eo v- 6tP+1 

With the elapse of time the point x0 = eOdo twl moves to the rieht 
along the abscisss and it becomes rather difficult to rorh out a 
practical solution for fairly high valiues of t close to z,,(t). because 
the solution to problem (0.2) to (3.1) attains the self-similar regime 
when t -, Q) /Q], i.e. 

= (% $1 lim - 
P 

=crf(E) rhent- oo 

there is good reason to go over to eorlng wself-sirilar* coordinates, in 
uhfch the solution at fairly high values of t hardlr varies. Thus the 
Polloring transformation of variables is convenient 

u 

p = (t + 1)P’ 
g= V6(:-t-1~p i q=ln(t+l) (3.2) 

Pith this trausforuatlon ue hare 

limP(t, rl)=f@ when rl-+w 

and this is very convenient for practical calculation at hish ralues of 
t. It is evident frou Formula (2.2) that t = crl - 1, I.e. for corparatire- 
ly 88811 ralaes of 7) the time t is already great. (The shift along the t 
axis fn the Poruulae (3.2) is carried out for conrenienoe of calsalation 

close to the point t = 0). On changing variables (9.2) problem (0.2) to 
(2.1) transforms Into the boundary problem 

p=O nhenq==O, p = 6 (1 - e-n )P + o1(1 (q)) ewnp when f = 0 (3.4) 

Here the derivative dp/d[ is discontfnaoua, and thle involves 
further dirficultles for rpproximating it by fiuite difference. In the 
first place the error of the approximation of replacing apfd( by a 
finite difference at a point where ap/ag has a break does not tend to 
zero with indefinite decrease in the step. Further aualysls is essential 
(for instance consult Csl) Sor a pr00r of comma- bd2-i a differ- 
ence solution aud the accurate oue. Purtheruore it has been shorn bx 
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calculation that the derivative dp/ at cannot be .approxiaated, for in- 
stance by a central difference for then the explicit scheme becomes on- 
stable (Starting at fairly 10% values of pi&, i.e. close to the discoa- 
tinaity point “Eo, the graph of the solution oscillates about the axis 
aad rapidly goes out of haad). Further, the implicit scheme is stable, 
but the approximate solution obtained oscillates aboat the abscissa and 
takea on negative values which has a qnalitative effect on the solution. 

Fig. 3. 

ho methods of approximating ap/ d c are proposed in f91. 

The first method consists in replacing &p/at by a ‘right-hand side 
difference’ so that the difference solation p:k is determined frOS the 
formula 

Pik+l = Pik (1 - Pr) +‘tr (Pi+lk - P-f-f 
Pik) 2’ + ; ($+,k - 2P& -b &klh.) 

Pi0 z Or pok = 0 (1 - eekT )p + 61 (t(k)) eekp+ (3.5) 

Solution (3.5) is stable, it approaches (converges mfth) the accurate 
one when h + 0 if the step in time I satisfies the condition that I < Ah2, 
where A is 8 definite (determined), constsnt. 

The second way of replacfng (3.3) hy s difference equation consists 
in bringiig (3.3) into the form 

ap a=p= m ap ---_ 
a~ - ap PP \z=x- 2 

P!tfF.) (3.6) 

and the expression a;p/aL is approximated by aa oblique difference. 

Equation (3.8) ~811 be solved in a maan%r analogous to (1.1) rith the 
difference only that the correspondence betreen the points of the 
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SOlUtiOu for 9 = 91 and q = ~1 + r is taken 8long direction t. depending 

ou c 

Such a ‘slanted* .arraugement of points of the solutfou for u =-1)l and 
u = ul + r corresponds to a straight line iu the first wstez of ooordi- 
natea, Vhen 4 = o the angle (I., & is equal to ~12 so that the bouud8rV 
condition is giren accurately. The difference schema is as follors 

P. rk+l = [Pi+y+l,k a + f’i+,,k (* -sa)l (1 -v) t (3.7) 

-!- ; @ (&+r+z.k - 2p2i+u+l,k + &+y,k) + t’ - a)(pai+y+l,k - 2P*,+y,k + P*i+y_l,k)] 

The difference soXution obtained fro8 (3.5) and (3.7) is bouuded, has 
a fiafte auzber of regions where it is monotonic for fired value of i and 
embodies a finite velocity of distarbrrnoe propagation. 

It is demonstrated in 191 that the order of error in (3.5) is O(\l.h). 

It is easy to see that the order of error of (3.7) Is leas beoause In 
this c88e the term ap/af ie absent. Figures S and 4 ahor graphs of 
calculations of problem (0.2) to (9.1) for UI =. 1, o-=-- l/4, 2, p =. 1. It 
is evident that a rapid change takes place fro8 one self-similar solution 
to the other. 
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